Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658746

RESUMO

Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5-7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.

2.
PLoS One ; 17(10): e0274267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36240205

RESUMO

Acacia (Leguminosae, Caesalpinioideae, mimosoid clade) is the largest and most widespread genus of plants in the Australian flora, occupying and dominating a diverse range of environments, with an equally diverse range of forms. For a genus of its size and importance, Acacia currently has surprisingly few genomic resources. Acacia pycnantha, the golden wattle, is a woody shrub or tree occurring in south-eastern Australia and is the country's floral emblem. To assemble a genome for A. pycnantha, we generated long-read sequences using Oxford Nanopore Technology, 10x Genomics Chromium linked reads, and short-read Illumina sequences, and produced an assembly spanning 814 Mb, with a scaffold N50 of 2.8 Mb, and 98.3% of complete Embryophyta BUSCOs. Genome annotation predicted 47,624 protein-coding genes, with 62.3% of the genome predicted to comprise transposable elements. Evolutionary analyses indicated a shared genome duplication event in the Caesalpinioideae, and conflict in the relationships between Cercis (subfamily Cercidoideae) and subfamilies Caesalpinioideae and Papilionoideae (pea-flowered legumes). Comparative genomics identified a suite of expanded and contracted gene families in A. pycnantha, and these were annotated with both GO terms and KEGG functional categories. One expanded gene family of particular interest is involved in flowering time and may be associated with the characteristic synchronous flowering of Acacia. This genome assembly and annotation will be a valuable resource for all studies involving Acacia, including the evolution, conservation, breeding, invasiveness, and physiology of the genus, and for comparative studies of legumes.


Assuntos
Acacia , Fabaceae , Acacia/genética , Austrália , Cromo , Elementos de DNA Transponíveis , Fabaceae/genética , Genoma de Planta , Anotação de Sequência Molecular , Filogenia , Melhoramento Vegetal
3.
Front Genet ; 10: 586, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293619

RESUMO

The development of high-quality chromosomally assigned reference genomes constitutes a key feature for understanding genome architecture of a species and is critical for the discovery of the genetic blueprints of traits of biological significance. South American camelids serve people in extreme environments and are important fiber and companion animals worldwide. Despite this, the alpaca reference genome lags far behind those available for other domestic species. Here we produced a chromosome-level improved reference assembly for the alpaca genome using the DNA of the same female Huacaya alpaca as in previous assemblies. We generated 190X Illumina short-read, 8X Pacific Biosciences long-read and 60X Dovetail Chicago® chromatin interaction scaffolding data for the assembly, used testis and skin RNAseq data for annotation, and cytogenetic map data for chromosomal assignments. The new assembly VicPac3.1 contains 90% of the alpaca genome in just 103 scaffolds and 76% of all scaffolds are mapped to the 36 pairs of the alpaca autosomes and the X chromosome. Preliminary annotation of the assembly predicted 22,462 coding genes and 29,337 isoforms. Comparative analysis of selected regions of the alpaca genome, such as the major histocompatibility complex (MHC), the region involved in the Minute Chromosome Syndrome (MCS) and candidate genes for high-altitude adaptations, reveal unique features of the alpaca genome. The alpaca reference genome VicPac3.1 presents a significant improvement in completeness, contiguity and accuracy over VicPac2 and is an important tool for the advancement of genomics research in all New World camelids.

4.
BMC Genomics ; 19(1): 379, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29788909

RESUMO

BACKGROUND: Clostridium perfringens causes a range of diseases in animals and humans including necrotic enteritis in chickens and food poisoning and gas gangrene in humans. Necrotic enteritis is of concern in commercial chicken production due to the cost of the implementation of infection control measures and to productivity losses. This study has focused on the genomic analysis of a range of chicken-derived C. perfringens isolates, from around the world and from different years. The genomes were sequenced and compared with 20 genomes available from public databases, which were from a diverse collection of isolates from chickens, other animals, and humans. We used a distance based phylogeny that was constructed based on gene content rather than sequence identity. Similarity between strains was defined as the number of genes that they have in common divided by their total number of genes. In this type of phylogenetic analysis, evolutionary distance can be interpreted in terms of evolutionary events such as acquisition and loss of genes, whereas the underlying properties (the gene content) can be interpreted in terms of function. We also compared these methods to the sequence-based phylogeny of the core genome. RESULTS: Distinct pathogenic clades of necrotic enteritis-causing C. perfringens were identified. They were characterised by variable regions encoded on the chromosome, with predicted roles in capsule production, adhesion, inhibition of related strains, phage integration, and metabolism. Some strains have almost identical genomes, even though they were isolated from different geographic regions at various times, while other highly distant genomes appear to result in similar outcomes with regard to virulence and pathogenesis. CONCLUSIONS: The high level of diversity in chicken isolates suggests there is no reliable factor that defines a chicken strain of C. perfringens, however, disease-causing strains can be defined by the presence of netB-encoding plasmids. This study reveals that horizontal gene transfer appears to play a significant role in genetic variation of the C. perfringens chromosome as well as the plasmid content within strains.


Assuntos
Clostridium perfringens/genética , Clostridium perfringens/fisiologia , Enterite/microbiologia , Evolução Molecular , Variação Genética , Animais , Galinhas/microbiologia , Cromossomos/genética , Enterite/complicações , Necrose/complicações , Plasmídeos/genética
5.
Genome Announc ; 5(2)2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28082499

RESUMO

This study describes draft whole genomes of 15 Staphylococcus aureus isolates from dairy farms located in Victoria, Australia. Two novel sequence types (ST3183 and ST3184) were identified among these isolates.

6.
Genome Announc ; 4(5)2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27609916

RESUMO

Listeria monocytogenes sequence type 204 (ST204) strains have been isolated from a range of food, environmental, and clinical sources in Australia. This study describes the draft genome sequences of 15 isolates collected from meat and dairy associated sources.

7.
PLoS One ; 9(8): e105164, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25126840

RESUMO

Feral honey bee populations have been reported to be in decline due to the spread of Varroa destructor, an ectoparasitic mite that when left uncontrolled leads to virus build-up and colony death. While pests and diseases are known causes of large-scale managed honey bee colony losses, no studies to date have considered the wider pathogen burden in feral colonies, primarily due to the difficulty in locating and sampling colonies, which often nest in inaccessible locations such as church spires and tree tops. In addition, little is known about the provenance of feral colonies and whether they represent a reservoir of Varroa tolerant material that could be used in apiculture. Samples of forager bees were collected from paired feral and managed honey bee colonies and screened for the presence of ten honey bee pathogens and pests using qPCR. Prevalence and quantity was similar between the two groups for the majority of pathogens, however feral honey bees contained a significantly higher level of deformed wing virus than managed honey bee colonies. An assessment of the honey bee race was completed for each colony using three measures of wing venation. There were no apparent differences in wing morphometry between feral and managed colonies, suggesting feral colonies could simply be escapees from the managed population. Interestingly, managed honey bee colonies not treated for Varroa showed similar, potentially lethal levels of deformed wing virus to that of feral colonies. The potential for such findings to explain the large fall in the feral population and the wider context of the importance of feral colonies as potential pathogen reservoirs is discussed.


Assuntos
Abelhas/parasitologia , Vírus de Insetos/fisiologia , Ácaros/fisiologia , Animais , Interações Hospedeiro-Parasita , Ácaros/virologia , Dinâmica Populacional
8.
J Agric Food Chem ; 60(13): 3341-7, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22409233

RESUMO

Twenty microsatellites (simple sequence repeats, SSR) were used to discriminate wild boar from domestic pig and to identify mixtures of the two. Reference groups of wild boar and pig samples were collected from the UK and Europe for genetic assignment tests. Bayesian Analysis of Populations software (BAPs) gave 100% correct assignment for blind wild boar and pig samples and correctly identified mixed samples. DNA was extracted from 12 commercial food samples (11 labeled as containing wild boar) including patés, salamis, and sausage, and good SSR profiles were obtained. Eleven samples were correctly assigned as pig, and two as mixed meats. One sample sold as wild boar meat was clearly assigned as pig. A further 10 blind samples of meat cuts were analyzed, eight wild boar and two pig, and all were correctly assigned.


Assuntos
Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Produtos da Carne/análise , Repetições de Microssatélites , Sus scrofa/genética , Animais , Cruzamento , Europa (Continente) , Genótipo , Produtos da Carne/normas , Controle de Qualidade , Sus scrofa/classificação
9.
J AOAC Int ; 93(4): 1243-8, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20922958

RESUMO

Quantification of genetic modification (GM) is often undertaken to test for compliance with the European Union GM labeling threshold in food. Different control laboratories will often use common validated methods, but with different models of real-time PCR machines. We performed two separate ring trials to evaluate the relative precision and accuracy of different types of real-time PCR machines used to quantify the concentration of GM maize. Both trials used dual-labeled fluorogenic probes for quantification. The first ring trial used separate GM and reference assays (a single fluorescence channel), and the second used a combined duplex assay (two simultaneous fluorescence channels). Five manufacturers and seven models--including a 96-well microtiter-plate, rotary, and portable machines--were examined. In one trial, the machine used had a significant effect on precision, but in the other it did not. Overall, the degree of variation due to the machine model was lower than other factors. No significant repeatable difference in accuracy was observed between machine models. It was not possible to use sufficient replication of machine type in each laboratory to examine all sources of variation in this study, but the results strongly indicate that factors other than machine type or manufacturer (e.g., method or laboratory) contribute more to variation in a GM quantification result.


Assuntos
Reação em Cadeia da Polimerase/instrumentação
11.
Mol Biol Evol ; 20(12): 2067-75, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12949152

RESUMO

The genetic structure and evolutionary history of the genus Pisum were studied exploiting our germplasm collection to compare the contribution of different mechanisms to the generation of diversity. We used sequence-specific amplification polymorphism (SSAP) markers to assess insertion site polymorphism generated by a representative of each of the two major groups of LTR-containing retrotransposons, PDR1 (Ty1/copia-like) and Cyclops (Ty3/gypsy-like), together with Pis1, a member of the En/Spm transposon superfamily. The analysis of extended sets of the four main Pisum species, P. fulvum, P. elatius, P. abyssinicum, and P. sativum, together with the reference set, revealed a distinct pattern of the NJ (Neighbor-Joining) tree for each basic lineage, which reflects the different evolutionary history of each species. The SSAP markers showed that Pisum is exceptionally polymorphic for an inbreeding species. The patterns of phylogenetic relationships deduced from different transposable elements were in general agreement. The retrotransposon-derived markers gave a clearer separation of the main lineages than the Pis1 markers and were able to distinguish the truly wild form of P. elatius from the antecedents of P. sativum. There were more species-specific and unique PDR1 markers than Pis1 markers in P. fulvum and P. elatius, pointing to PDR1 activity during speciation and diversification, but the proportion of these markers is low. The overall genetic diversity of Pisum and the extreme polymorphism in all species, except P. abyssinicum, indicate a high contribution of recombination between multiple ancestral lineages compared to transposition within lineages. The two independently domesticated pea species, P. abyssinicum and P. sativum, arose in contrasting ways from the common processes of hybridization, introgression, and selection without associated transpositional activity.


Assuntos
Elementos de DNA Transponíveis/genética , Evolução Molecular , Variação Genética , Pisum sativum/genética , Proteínas de Ligação a DNA/genética , Marcadores Genéticos , Modelos Genéticos , Pisum sativum/classificação , Filogenia , Polimorfismo Genético , Recombinação Genética , Retroelementos/genética , Proteínas de Saccharomyces cerevisiae , Especificidade da Espécie , Transativadores/genética , Fatores de Transcrição , Fator de Crescimento Transformador beta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA